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We theoretically proposed and experimentally demonstrated that a nonlinear acoustic dimer system with
amplitude-dependent and sign-reversible coupling exhibits unprecedented control over multistability and
state selection. The engineered inter-resonator coupling κ ¼ κ0 þ αjψ1j2 yields a quintic steady-state
response with at most three dynamically stable states: low (LS), intermediate (IS), and high (HS).
Monotonic sweeps produce asymmetric hysteresis—LS → HS on upsweep, but HS → IS → LS on
downsweep—leaving a linearly stable yet dynamically inaccessible IS under conventional driving.
Basin-of-attraction analysis shows that nonlinear coupling reshapes the phase-space geometry, creating
barriers that isolate the IS. Leveraging this insight, we developed a simple up-down-up adiabatic protocol
that achieves full and selective access to all stable states, including the otherwise transparent IS. Mapping
versus drive frequency and damping reveals transitions from separated bistable loops to a unified tristable
regime. These results, to our knowledge, provide the first experimental realization of nonlinear-coupling-
governed multistability and a versatile route to programmable multistate control.
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Introduction—Nonlinear systems display a rich variety
of phenomena—solitons, chaos, multistability, and pattern
formation—that are foundational across modern physics
[1–3]. Multistability, where multiple stable states coexist
under identical parameters, underpins dynamics in diverse
areas of physics [4–9], biology [10–12], engineering [13–
16], and ecology [17,18]. Transfers between these states,
often characterized by hysteresis under adiabatic driving,
typically proceed sequentially between adjacent energy
levels. For example, in a driven-dissipative system, one
commonly observes switching from a low-amplitude state
(LS) to a high-amplitude state (HS) as the driving strength
increases, as the system can absorb and store more energy
from the external source. However, interacting nonlinear
systems can harbor intermediate states (IS) that are linearly
stable yet dynamically inaccessible—folded inside the
hysteresis loops and missed by conventional protocols
[19–21]. Recent advances have proposed pulse excitations
as a route to unfold such hidden IS [21], opening avenues
for information encryption and dynamic control, yet still
experimentally elusive.
A fundamental question emerges: how can a linearly stable

IS remain dynamically inaccessible under conventional

driving?While recent studies have shown that utilizing onsite
nonlinearity can excite such hidden IS, these approaches
typically rely onpulse excitations or fine-tuned initializations,
offering limited insight into the general accessibility criteria
[21]. Here, we reveal that nonlinear coupling—a distinct
mechanism from onsite nonlinearity—can reshape the attrac-
tor landscape to form topological barriers, dynamically
isolating the IS despite its linear stability. This leads to the
emergence of “transparent” IS during LS → HS transfers,
unreachable under standard adiabatic sweeps. Such insights
go beyond specific models, offering a general framework for
understanding multistability in driven nonlinear systems.
To demonstrate this, we propose a dimer system with

programmable nonlinear coupling κ ¼ κ0 þ αjψ1j2, where
the sign-flipping capability (κ0 > 0 and α < 0) enables
nontrivial attractor topology and unprecedented control
over multistability. Distinct from material-based or on-site
nonlinearities (e.g., Kerr-type effects in optics) [22–29],
nonlinear coupling—where interactions depend on the
subsystem amplitudes/phases—has emerged as a distinct
paradigm for wave control [30–36], for instance, in
inducing the reversal of non-Hermitian skin effects in
circuit systems [37]. Here, we provide a general, program-
mable realization in acoustics with amplitude-dependent,
sign-reversible coupling, unlocking precise control of
multistability and transfer pathways. The nonlinear cou-
pling induces asymmetric state transfers—LS → HS during
upward sweeps and HS → IS → LS during downward
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sweeps—highlighting the coupling’s crucial role in state
selection. By combining adiabatic driving with attractor
basin engineering, we achieve full state accessibility,
including the otherwise “transparent” IS, via a circuitous
evolution strategy. Our platform provides the first exper-
imental demonstration of multistability governed by non-
linear coupling, bridging theoretical concepts with physical
realizations.
Nonlinear coupling system for tristability—To explore

how nonlinear inter-resonator coupling can give rise to
multistable dynamics, we consider a minimal system
composed of two coupled resonators, as schematically
illustrated in Fig. 1(a). In typical experimental or simulation
settings, the system is driven by exciting one of the
resonators and observing how its response evolves with
respect to varying driving parameters. Here, without loss of
generality, we consider that Resonator 1 is driven by a
harmonic source of frequency fin and amplitude Ain.
Crucially, the coupling strength κ between the two reso-
nators is not constant, but depends nonlinearly on the field
intensity inside Resonator 1 jψ1j, i.e., κ ¼ κ0 þ αjψ1j2,
where κ0 > 0 is the baseline coupling and α < 0 introduces
amplitude-dependent weakening and eventual sign reversal

of the coupling when jψ1j exceeds
ffiffiffiffiffiffiffiffiffiffiffiffi

κ0=jαj
p

. This form of
nonlinear coupling enables qualitatively distinct multi-
stability scenarios compared to conventional Kerr-type
systems. The system dynamics are governed by

i
d
dt
Ψ ¼ 2π
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where u1;2 and γ, respectively, denote the resonant fre-
quency and damping factor of the cavities, s ¼ Aine−2πifint

is the source signal, and Ψ ¼ ½ψ1;ψ2�T represents complex
wave functions of the physical system, e.g., acoustic
pressure fields inside the cavities experimentally inves-
tigated later. Equation (1) takes the form of a driven-
dissipative Schrödinger-type equation, a standard frame-
work for modeling coupled classical wave systems [38–
40]. To analyze the steady-state response, we seek solutions
of the form ψ1;2ðtÞ ¼ A1;2e−iθ1;2e−2πifint, and substitute
them into the coupled-mode equations. This yields a real
algebraic equation for the rescaled intensity variable
Ĩ1 ¼ αA2

1=κ0, whose explicit form is a quintic polynomial,

Ĩ51 þ 4Ĩ41 − 2ðη − 3ÞĨ31 − 4ðη − 1ÞĨ21
þ ½ðη − 1Þ2 þ ρ2�Ĩ1 − Ω ¼ 0; ð2Þ

where the dimensionless parameters η ¼ ðΓ1Γ2 − γ2Þ=κ20,
ρ ¼ ðΓ1 þ Γ2Þγ=κ20, and Ω ¼ αA2

inðΓ2
2 þ γ2Þ=κ50 encode the

detuning and drive strength, with Γ1;2 ¼ u1;2 − fin (see the
derivations in [40]). We note that while the polynomial is of
fifth order and can in principle admit up to five real negative
roots (corresponding to possible stationary amplitudes), not
all of them are dynamically stable. In fact, the Routh–
Hurwitz analysis [43] constrains the number of dynami-
cally stable fixed points to no more than three [40]. These
stable solutions correspond to the coexisting low, inter-
mediate, and high amplitude states (LS, IS, and HS),
forming the basis of tristability. We emphasize that the
nonlinear coupling, while depending solely on the wave
amplitude in Resonator 1, is mutual and reciprocal, which
is sufficient for the emergence of multistability [40].
To assess the emergence of tristability, we construct a

phase diagram using the dimensionless parameters η and ρ,
which are determined by the system’s intrinsic properties.
At a fixed driving frequency, these parameters remain
constant, while the drive-dependent term Ω varies with
the input amplitude. This allows us to treat η and ρ as
coordinates, and determine whether tuning the input
strength can induce three coexisting stable states. As shown
in Fig. 1(b), the red region indicates parameter combina-
tions where tristability is possible over a finite range of
drive amplitudes. For example, point A with ½η; ρ� ¼
½0.181; 0.162� lies in the tristable region. Within a finite
range of input amplitude Ain [marked in green in Fig. 1(c)],
Eq. (2) yields five real positive solutions for jψ1j, among
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FIG. 1. Nonlinear coupled resonator system and multistable
characteristics. (a) Schematic of two resonators with amplitude-
dependent nonlinear coupling κ ¼ κ0 þ αjψ1j2, where jψ1j is the
wave amplitude in Resonator 1. The system parameters include
resonant frequencies u1;2, damping rate γ, and external drive
(frequency fin and amplitude Ain). (b) Phase diagram showing
bistable (blue) and tristable (red) regions in ½η; ρ� parameter space,
with representative points A, D (tristable) and B, C (bistable)
marked. (c) Tristable response for case A ½η; ρ� ¼ ½0.181; 0.162�.
Calculated stable states (LS/IS/HS, blue dots) and unstable
solution (red) versus normalized Ain, with the tristable state
range marked in green. Gray/orange curves show simulated
hysteresis loops during Ain sweep up/sweep down, revealing
counterintuitive and asymmetric transfers between LS and HS, as
schematically illustrated in the inset. (d) Corresponding bistable
behavior for case B ½η; ρ� ¼ ½0.163; 0.215�, exhibiting separated
hysteresis loops and sequential state transfers (see the inset).
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which three are dynamically stable—corresponding to the
LS, IS and HS, respectively. Interestingly, adiabatic modu-
lation of Ain reveals an asymmetric transfer pathway:
during upward sweeps (gray curve), the system remains
in LS until a bifurcation point is reached, where it directly
jumps to HS while bypassing the stable IS. In contrast,
downward sweeps (orange curve) result in a sequential
HS → IS → LS transfer. This directional asymmetry is a
hallmark of our coupling-induced mechanism, which
reshapes the underlying basins of attraction—allowing
LS to be dynamically engulfed by HS during the upward
sweep, while preserving IS accessibility in the reverse
direction. In bistable regions [e.g., point B with ½η; ρ� ¼
½0.163; 0.215� in Fig. 1(b)], the system exhibits two dis-
connected hysteresis loops involving IS and either LS or
HS, as shown in Fig. 1(d). This fragmented bistability
landscape further underscores the role of nonlinear cou-
pling in sculpting unconventional state selection rules.
Such asymmetry in transfer pathways stands in stark
contrast to standard nonlinear systems, where multistability
typically yields symmetric hysteresis loops and predictable
bifurcation cascades [21]. These state-selection pathways
are examined and verified experimentally in the following
sections.
Acoustic realization of nonlinear coupling—Nonlinear

coupling, in which the interaction itself depends on local
state variables, has only recently begun to be explored and
remains uncommon in controlled experiments. To exper-
imentally realize the predicted tristable dynamics governed
by nonlinear inter-resonator coupling,we construct an active
acoustic system that emulates Schrödinger-type dynamics
using gain-controlled feedback circuits [39,44–49]. As
illustrated in Fig. 2(a), the system comprises two cuboid
acoustic resonators, each embedded with a speaker and a
microphone, calibrated to have slightly detuned natural
frequencies atu1 ¼ 1725.3 Hzandu2 ¼ 1729 Hz. In-phase
feedback loops (red lines) are implemented to compensate
for intrinsic losses, tuning the effective damping to γ ¼ 1 Hz
in both resonators.
The core of our design lies in the coupling path (blue

lines), where a signal processor modulates the inter-reso-
nator coupling according to the wave amplitude, thus
encoding a nonlinear coupling κðjψ j2Þ. Specifically, the
processor is programmed with a transfer function pout¼
ð1þαjpcj2=κ0Þpin, where κ0¼6.7Hz and α¼−8.3HzPa−2.
Here, pin and pout denote the input and output signals along
the coupling path, and pc is a control signal. Finally, we
close the loop by feeding back the local pressure signalp1 as
the control input pc, thereby establishing a self-regulating,
amplitude-sensitive coupling pathway. By externally con-
trolling pc and sweeping the excitation frequency, we
measure the pressure response p2, presented in Fig. 2(b),
which exhibits strong agreement with coupled-mode
theory predictions [40]. As shown in Fig. 2(c), the extrac-
ted coupling strength κ follows the anticipated form

κ0 þ αjpcj2, transitioning from positive to negative values
when jpcj > 0.89Pa.This sign reversal is further validated by
a π-phase jump in Argðp2=p1Þ shown in Fig. 2(d). This
experimental platform thus realizes, to our knowledge, the
first demonstration of amplitude-dependent, sign-reversible
inter-resonator coupling in an acoustic system. The intro-
duction of the signal process makes it more programmable
and reversible compared with other physical systems [50,51].
Full tristability access via adiabatic control—We exper-

imentally verify the asymmetric hysteresis predicted in
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FIG. 2. Experimental realization of nonlinear coupling in
acoustic resonators. (a) Schematic of the acoustic implementation
using two coupled cavities with active feedback circuits. In-phase
compensation circuits (red) balance cavity damping, while
programmable coupling circuits (blue) implement the nonlinear
coupling via a signal processor, which includes an analog-to-
digital converters (ADC), a digital signal processor (DPS) core,
and a digital-to-analog converter (DAC). Signal directions are
denoted with red arrows. Microphones and speakers enable wave
excitation and detection. Other elements, including phase shifters
and amplifiers, are omitted for clarity. (b) Measured (circles) and
fitted (curves) pressure responses jp2j as a function of control
pressure jpcj and driving frequency fin. The brown dashed curves
indicate the peak positions, while the black dashed lines indicate
the resonant frequencies u1 and u2 of the two isolated cavities.
(c) Extracted κ values (circles) follow the predicted quadratic
dependence κ ¼ κ0 þ αjpcj2 (curves), demonstrating sign rever-
sal (κ < 0) above jpcj ¼ 0.89 Pa. (d) Measured (circles) and
fitted (curves) Arg(p2=p1), consistent with κ’s positive or
negative nature with jpcj set as 0.7 (green) or 1.1 Pa (red),
respectively.
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Fig. 1(c) by fixing fin ¼ 1723.6 Hz and performing a
monotonic sweep of the excitation amplitude Ain. Shown as
path I in Fig. 3(a), jdAin=dtj is constant in every linear ramp
section, and the total time is set as 30 s to guarantee the
adiabaticity [40]. As shown in Fig. 3(b), the system
switches from the LS to HS during the up-sweep, but
returns only to IS during the down-sweep—confirming the
existence of a dynamically inaccessible yet stable inter-
mediate state under standard excitation protocols.
The observed asymmetry prompts an analysis of the

attractor landscape shaped by the nonlinear coupling. Each

fixed point—LS, IS, and HS—corresponds to a complex
state vector Ψð0Þ ¼ ðψ ð0Þ

1 ;ψ ð0Þ
2 Þ∈C2, forming a three-point

configuration embedded in a real four-dimensional spaceR4.
These states span an affine subspace, which we take as the
base plane for computing the basins of attraction. A basin
comprises initial conditions that evolve into a given attractor
under the system’s nonlinear dynamics. Figure 3(d) displays
the computed basins at Ain ¼ 0.78, revealing that the IS
basin is topologically disconnected from LS basin and
geometrically adjacent to HS. This explains why the system
transfers from LS to HS upon increasing Ain—as the
attractor LS degenerates, its basin is naturally absorbed
by the nearby HS basin, while the IS basin remains
inaccessible. Conversely, as Ain ¼ 0.69 [Fig. 3(e)] and
decreases adiabatically, the HS basin gradually contracts
and will be eventually engulfed by that of IS; consequently,
the system can subsequently transfer only from HS to IS.
This insight offers a strategy to access the otherwise

inaccessible IS. By first increasing Ain to enter the HS
basin, then decreasing it to fall into IS, and finally re-
increasing Ain to remain in IS, one can reliably reach the
intermediate state [path II in Fig. 3(a)]. The experimental
response shown in Fig. 3(c) confirms the success of this
protocol, validating the predictive power of the basin
geometry. This geometric insight into attraction of basins
offers not only an explanation for the observed hysteresis
asymmetry, but also a practical handle to engineer and
select target states from multistability, which we demon-
strate in the following section. Our mechanism relies on
quasistatic (adiabatic) modulation of the external drive
amplitude to reshape the basins of attraction, whereas
onsite-nonlinearity models with amplitude-dependent inter-
nal energy input (no external source) achieve state transfer
directly via basin selection and thus do not require
adiabaticity [29].
Tunable multistate engineering—Our system exhibits

exceptional tunability of multistable behavior via multiple
parameters, notably the excitation frequency fin and damp-
ing rate γ. Using the same Ain sweep protocol, we
experimentally map the tristable region width ΔAin as a
function of fin [Fig. 4(a), along path C-D in Fig. 1(b)]. As
fin increases, the system evolves from a bistable regime
with separated hysteresis loops to a unified tristable regime,
as shown in Figs. 4(b) and 4(c), revealing a structure
transition in the underlying attractor landscape. We note the
LS → HS transfer in Fig. 3(c) differs from that in Fig. 1(c)
and is straightforward due to the missing overlap between
LS and IS [40].
Tuning the damping rate γ offers another independent

knob: at fixed fin ¼ 1723.6 Hz, increasing γ to 1.3 Hz
[point B in Fig. 1(b)] suppresses one attractor, recovering
bistability shown in Fig. 4(d). These results establish our
platform as a versatile and reconfigurable test bed for
engineering nonlinear dynamics, with potential implica-
tions for programmable acoustic logic and adaptive
devices.
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FIG. 3. Controlled excitation of multistable states through
tailored driving protocols. (a) Two modulation schemes for the
driving amplitude Ain: linear ramp-up followed by linear decay (I)
and up-down-up linear modulation (II). The source frequency is
set as fin ¼ 1723.6 Hz. (b) State transfers under Scheme I:
experimental measurements (circles) reveal direct LS → HS
jump during ramp up (gray), followed by sequential HS → IS →
LS transfers during ramp down (orange). Blue curves denote
theoretically predicted intermediate states, with the green region
marking the tristable parameter range. (c) State transfers via
Scheme II: the up-down-up modulation enables full exploration
of IS branches within the tristable region that are inaccessible
through simple ramp protocols. (d),(e) Basins of attraction for
Ain ¼ 0.78 (d) and Ain ¼ 0.69 (e), denoted with dashed lines in
(b). Each plot shows a cross section in the plane defined by the
three stable states (black dots), spanned by ½m;n� (see details in
Supplemental Material [40]), where m1 ¼ ½−0.89;−0.29;
0.35; 0.011�T, n1 ¼ ½0.36;−0.66; 0.34;−0.56�T, m2 ¼ ½−0.84;
−0.40; 0.37; 0.071�T, n2 ¼ ½0.25;−0.69;−0.040;−0.68�T.
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Conclusion and discussion—We have shown that multi-
stability can be engineered and controlled via nonlinear
inter-resonator coupling. In a minimal acoustic dimer with
programmable coupling κ ¼ κ0 þ αjψ1j2, we observed
asymmetric hysteresis—LS → HS on upsweep but HS →
IS → LS on downsweep. Basin-of-attraction analysis
reveals why an explicit IS remains dynamically inacces-
sible under monotonic drives and explains the failure of
conventional pulse-excitation methods for LS → IS trans-
fers (see Sec. 1.6 in [40]). This understanding enabled our
development of a simple up-down-up protocol that reli-
ably accesses all states, including the normally “trans-
parent” IS. The actively tuned acoustic implementation
provides a compact and programmable platform realizing,
to our knowledge, multistability governed by coupling
nonlinearity.
Our nonlinear coupling mechanism fundamentally dif-

fers from Kerr-type nonlinear systems, where increasing
drive strength typically induces direct LS → IS transfers
when the intermediate state exists [21]. In our system, the
sign-flipping nature of the nonlinear coupling is pivotal for
achieving tristability; otherwise, the system degenerates to
conventional bistability (see Sec. 4.2 in [40] for the case of
κ0 ¼ 0, i.e., purely nonlinear coupling). In addition, the
sign-flipping process of κ occurs when jκj ≈ 0, a condition
that coincides with the IS and remarkably decouples the
two resonators. This dynamical decoupling suppresses

energy transfer between cavities, leading to strongly
asymmetric wave responses (see Sec. 4.1 in [40] for
experimental measurements in both resonators).
The approach is readily extensible. More general cou-

pling laws—κðjψ1j2; jψ2j2Þ, saturable or nonlocal forms,
time-modulated or non-Hermitian interactions, and net-
work/array geometries—are expected to produce analogous
basin-mediated selection rules and additional classes of
hidden states. Our findings, together with other recent
explorations of nonlinear coupling in diverse platforms
such as circuit systems for non-Hermitian physics [37],
underscore the broad potential of this paradigm. We
anticipate that these ideas can be transferred to diverse
platforms, enabling programmable multistate memory and
nonlinear signal processing, and offering a route to explore
coupling-driven phenomena at the frontier of nonlinear
dynamics [52–57].

Note added—Recently, we became aware of a related
preprint that excites fully hidden states through Kerr
nonlinearity and pulsed excitation [58]. In contrast, our
scheme employs coupling nonlinearity and adiabatic drive
modulation to engineer the basins of attraction.
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